BiliNet: Serum Bilirubin Prediction for Neonates using Segmentation-Guided Neural Networks

NJSHS '24

Subset of research peer-reviewed and presented at the IEEE-MIT Undergraduate Research Technology Conference

What is Neonatal Jaundice?

Disease Characteristics
Severe

Formation of bilirubin **Exercise Exercise Exercise Progression**

Bilirubin level indicates severity of jaundice

Figure 2: (Pediatric Society of Ghana)

Global Disparities

Limitations of Current Approaches

Drawbacks of existing approaches directly correlate with disproportionate incidence rates in developing countries*

Visual **Assessment**

difficult to assess severity

- Drastically more difficult for darker tones Visual Laboratory Transcutaneous

Assessment Blood Test bilirubinometer

Unreliable Time Intensive to Expensive

difficult to assess severity to thes between 6-24 hours costs between \$3.000

• Drastically more • Requires e
	- Requires frequent observation

Laboratory Blood Test

Unreliable Time Intensive Expensive

takes between 6-24 hours

- Requires existing medical
- Requires medical • professionals

Transcutaneous bilirubinometer

Expensive

costs between \$3,000-

- infrastructure operating range Inaccurate outside
	- Worse performance on preterm infants

Computer Vision

Difficult to Use

skin/eye features inconsistent \$7,000

- Fails on darker skin tones
- Eye movements are difficult to track in clinical settings

Research Objectives

Research Objectives

Question: Can we predict bilirubin levels accurately, inexpensively.

and without bias?

Engineering Goals

Ince: implement a tool that predicts bilirubin

ith at least 80% correlation to laboratory

m Guiding Question: Can we predict bilirubin levels accurately, inexpensively, and without bias?

- 1. Performance: implement a tool that predicts bilirubin volume with at least 80% correlation to laboratory measurements
- 2. Accessible: utilize a data source that does not bias against darker skin tones.
- 3. Scalable & Easy to Use: an end-to-end system that provide bilirubin volume in under 1 minute.
- 4. Low-Cost: costs less than \$5 per test.
- 5. Clinical Efficacy: bilirubin measurements enable severity diagnosis and phototherapy classification with 80% accuracy

I hypothesized that a machine learning model would be able to learn relationships useful for bilirubin prediction at low financial and temporal cost.

Variables

grade jaundice research dataset

Data Annotation Framework

Goal: build high quality dataset

interference Major blood

Annotation Goals

interference **Interference** Exclude Blood

> Minimize Boundary **Uncertainty**

Include Complete Bilirubin Flow **Gradients**

819 test strip images annotated

Original

Image Annotation Polygon Binary Mask Splotchy Signif

Splotchy bilirubin flow

blur and collection rotation near edges **Bilirubin**

Segmentation Model

Goal: find filter box and its RGB values

Data Preprocessing

Image Augmentation

Random transformations reflect real-world irregularities

+ scaled contrast transforms

Splitting X & Y into datasets

Segmentation Model

Goal: find filter box and its RGB values

Data Preprocessing U-Net: Encoder-Decoder

Image Augmentation

Random transformations reflect real-world irregularities

Normal

Rotated Brightness + scaled contrast transforms All

Splitting X & Y into datasets

Downsampling finds "what" is in the image (feature extractor) Upsampling translates high level features → specific segmentation

20% 160 $\sqrt{\frac{3}{2}}$ **Adam optimizer**: minimizing log loss Parameters: 31,031,745 Compared to: DeepLabv3

Segmentation Model

Data Preprocessing U-Net: Encoder-Decoder

Mask Analysis and Feature Engineering

Bilirubin concentration tracks Bilirubin intervals demonstrates yellow-blue relationship + non-linear traits yellow-blue axis 5 mg/dL 10 mg/dL $\frac{1}{250}$ 20 mg/dL sRGB increasing
concentration $\begin{array}{l} \mbox{Frequency} \\ \mbox{150} \end{array}$ Frequency
 $\frac{200}{150}$ concentration $\frac{3}{2}$ $\frac{400}{300}$ blue is \circ reference RGB Value RGB Value point **the compact of the c**

Goal: build features

Mask Analysis and Feature Engineering

Goal: build features

Bilirubin concentration tracks Bilirubin intervals demonstrates yellow-blue relationship + non-linear traits yellow-blue axis 400 800 300 5 mg/dL 10 mg/dL $\frac{1}{250}$ 20 mg/dL 700 $sRGB$ 300 600 200 250 increasing
concentration $\begin{array}{l} \mbox{Frequency} \\ \mbox{150} \end{array}$ Frequency
 150 concentration $\frac{3}{2}$ $\frac{400}{300}$ 150 100 $\frac{20}{\frac{1}{2} \cdot \frac{1}{2} \cdot \frac{1}{2} \cdot \frac{1}{2}}$ Red Channel
 $\frac{1}{2}$ Red Channel
 $\frac{$ blue is reference 250 point (Unravel.com) Mask to Features Pipeline [0-1] Heatmap depicts non-linearity Red Channel between input features R **R** Green Channel G \rightarrow G S \rightarrow $\frac{3}{5}$ \rightarrow $\frac{0.68}{1}$ \rightarrow $\frac{0.68}{1}$ \rightarrow $\frac{0.93}{1}$ **G** $\frac{3}{5}$ $\frac{2}{5}$ $\frac{0.8}{5}$ $\frac{1}{1}$ $\frac{0.68}{5}$ $\frac{0.93}{5}$ $\frac{0.66}{5}$ Blue Channel **B** \int_{0}^{3} 0.69 0.93 0. 512x320 pixels Zoomed-in RGB Matrix

Bilirubin Prediction Model

Goal: predict total serum bilirubin

Features

Red Channel Mean

• Specific intensity of yellow

Green Channel Mean

. Specific intensity of vellow

• Specific intensity of yellow

Blue Channel Mean

• Reference point + ambient lighting

Greyscale

• Overall intensity + luminance

Parameters: 2047 Adam optimizer: minimizing MSE convergence

Compared to: random forest, ridge regression (L2), support vector regression

Neural Network Maps Features to TSB

Model Tuning and Optimization

Goal: maximize model performance

What we learned…

Segmentation Task

18 experiments

Activation: ReLU Activation: ReLU Batch Size: 16 Epochs: 40 Learning Rate: 0.0001

↓

ReLU: induces optimal non-linearity into model; may result in dead neurons

Learning Rate: slow to learn and does not overfit on data

Regression Task

216 experiments

Batch Size: 64 Epochs: 35 Learning Rate: 0.01 Network Width: 1

Complexity: narrow layers reduces overfitting

Depth: fewer layers (2) and low feature dimensions means model learns quick and fast

Parallel plot shows neurons per layer and training speed are most critical for regression

Cross validation ensures model is not memorizing labels

Results: Segmentation Model Selection

Key Metrics

Intersection over Union: performance on continuous filter box $\mathbb{E} \left[\begin{array}{c} |A \cup D| \\ |P| \end{array} \right]$ region (p<0.05) **ation Model Selection**

Key Metrics
 $\sum_{AB} = \frac{|A \cap B|}{|A \cup B|}$ Intersection over Union:

performance on continuous filte

region (p<0.05)
 \sum_{AB} = $\frac{2|X \cap Y|}{|X| + |Y|}$ Sorensen-Dice coefficient

diverge pixel-wise bina

Sørensen–Dice coefficient (F1): average pixel-wise binary classification performance (p<0.05)

U-Net outperforms DeepLabv3 on all metrics due to better neuron distribution

Secondary Metrics

Log Loss: measures confidence on pixel-wise output probabilities (pre-binarization) (p<0.05)

Area under (ROC) Curve: relationship between precision and recall

Precision: measures confidence on pixel-wise output probabilities Recall: measures performance solely on filter box region

Results: Bilirubin Prediction Model Selection

-
- Spearman rank finds non-linear relationships as well + indicates missing features

Pearson: 83%; Spearman: 84% Neural network outperforms a variety of regression architectures and exhibits strict linear relationship

$$
r=\frac{\sum\left(x_{i}-\bar{x}\right)\left(y_{i}-\bar{y}\right)}{\sqrt{\sum\left(x_{i}-\bar{x}\right)^{2}\sum\left(y_{i}-\bar{y}\right)^{2}}}
$$

$$
\rho=1-\frac{6\sum d_i^2}{n(n^2-1)}
$$

Results: Comparison to Gold Standard Blood Tests

Results: Qualitative Analysis

Input Test Strip Variety of lighting, scale, and rotation conditions

Ground Truth Mask across all masks

Predicted Mask (raw) Predictions reflect environmental

+ blood irregularities

Post-processed Mask

Final mask contains maximal bilirubin flow

Predicted TSB

Figure 14: Segmentation performance in variety of test strip scenarios

Clinical Efficacy: Severity Diagnosis

- **verity Diagnosis**
essify the severity of jaundice?
• Bhutani Nomogram: mg/dL cutoffs by
age for risk of severe hyperbilirubinemia
• Used between 18-144 hours after birth age for risk of severe hyperbilirubinemia
- Used between 18-144 hours after birth
- Difference between risk zones not discernable to the eye

A: Consistent when there is enough data

Clinical Efficacy: Phototherapy Diagnosis

Clinical Efficacy: Phototherapy Diagnosis

Question: Can BiliNet accurately classify if the baby needs

phototherapy 24 hours after birth?

Confusion Matrix ROC Curve phototherapy 24 hours after birth?

Confusion Matrix

ROC Curve

and 75% specificity.

Phototherapy thresholds from **Area under curve is 95%** Phototherapy thresholds from

National Institute of Health

Clinical Efficacy: Phototherapy Diagnosis

Clinical Efficacy: Phototherapy Diagnosis
Question: Can BiliNet accurately classify whether the baby
needs phototherapy for all 100 hours after birth? needs phototherapy for all 100 hours after birth?

phototherapy classification across all 100 hours

Phototherapy thresholds from National Institute of Health

Overall Performance Relative to Other Approaches

BiliNet outperforms TcB AND sternum/scelera approaches across all metrics

End-to-End System Architecture

- **CONC**

1. Performance:
 \circ Segmentation model enables reading of blood pla

blood tests -> does not require medical infrastructur
 \circ Adapts to test strip misalignment, blood leakage, c
 \circ Extracted blood features **CONCLUSION**

Performance:

○ Segmentation model enables reading of blood plasma test strips in 10 seconds compared to 24-hour laboratory

blood tests → does not require medical infrastructure

○ Extracted blood features blood tests → does not require medical infrastructure $\begin{minipage}[t]{0.5em} \begin{tabular}{l} \textbf{Performance:} \end{tabular} \begin{tabular}{l} \textbf{Performance:} \end{tabular} \end{minipage} \begin{minipage}[t]{0.95\textwidth} \begin{tabular}{l} \textbf{Comcl} \end{tabular} \end{minipage} \begin{minipage}[t]{0.95\textwidth} \begin{tabular}{l} \textbf{S} & \textbf$ **CONCLUSION**

Performance:

○ Segmentation model enables reading of blood plasma test strips in 10 seconds compared to 24-hour laboratory

blood bests → coes not requirem modical infrastructure

→ Adapts to test strip mis
	- Adapts to test strip misalignment, blood leakage, and irregular lighting conditions
	-
	- relationships in extracted features
	- Predictions have 2.38 mg/dL error and low rate of outliers

- **CONC**

1. Performance:
 \circ Segmentation model enables reading of blood pla

blood tests -> does not require medical infrastructur
 \circ Adapts to test strip misalignment, blood leakage, c
 \circ Extracted blood features **CONCLUSION**

Performance:

○ Segmentation model enables reading of blood plasma test strips in 10 seconds compared to 24-hour laboratory

blood tests → does not require medical infrastructure

○ Extracted blood features blood tests → does not require medical infrastructure $\begin{minipage}[t]{0.5em} \begin{tabular}{l} \textbf{Performance:} \end{tabular} \begin{tabular}{l} \textbf{Performance:} \end{tabular} \end{minipage} \begin{minipage}[t]{0.95\textwidth} \begin{tabular}{l} \textbf{Comcl} \end{tabular} \end{minipage} \begin{minipage}[t]{0.95\textwidth} \begin{tabular}{l} \textbf{S} & \textbf$ **CONCLUSION**

Performance:

○ Segmentation model enables reading of blood plasma test strips in 10 seconds compared to 24-hour laboratory

blood bests → does not require medical infrastructure

Adapts to test strip misali 2. Accessible, Scalable, and Easy-to-Use:

2. Accessible, and Easy-to-Use:

2. Accessible, Scalable, and Easy-to-Use:

2. Accessible, Scalable, and Easy-to-Use:

2. Accessible, Scalable, and Easy-to-Use:

2. Accessible, Sc **Conclusion**

Performance:

○ Segmentation model enables reading of blood plasma test strips in 10 seconds c

blood tests → does not require medical infrastructure

○ Adapts to test strip misalignment, blood leakage, and
	- **Adapts to test strip misalignment**, blood leakage, and irregular lighting conditions
	-
	- relationships in extracted features
	- o Predictions have 2.38 mg/dL error and low rate of outliers

-
- Mobile application scales globally; accessible in high incidence rate regions such as sub-Saharan Africa
- Minimal participation from the newborn which is critical in fast-paced clinical environments

1. Performance:

- **CONCLUSION**

Performance:

 Segmentation model enables reading of blood plasma test strips in 10 seconds compared to 24-hour laboratory

blood tests → does not require medical infrastructure

 Extracted blood features blood tests → does not require medical infrastructure $\begin{minipage}[t]{0.5em} \begin{tabular}{l} \textbf{Performance:} \end{tabular} \begin{tabular}{l} \textbf{Performance:} \end{tabular} \end{minipage} \begin{minipage}[t]{0.95\textwidth} \begin{tabular}{l} \textbf{Comclusion:} \end{tabular} \end{minipage} \begin{minipage}[t]{0.95\textwidth} \begin{tabular}{l} \textbf{S} & \text$ **CONCLUSION**

Performance:

○ Segmentation model enables reading of blood plasma test strips in 10 seconds compared to 24-hour laboratory

blood bests → coes not require medical infrastructure

Adapts to test strip misali 2. Accessible, Scalable, and Easy-to-Use:

2. Accessible, and Easy-to-Use:

2. Accessible, Scalable, and Easy-to-Use:

2. Accessible, Scalable, and Easy-to-Use:

2. Accessible, Scalable, and Easy-to-Use:

2. Accessible, Sc **Conclusion**

Performance:

○ Segmentation model enables reading of blood plasma test strips in 10 seconds c

blood tests → does not require medical infrastructure

○ Adapts to test strip misalignment, blood leakage, and 1. Performance:

○ Segmentation model enables reading of blood pla

blood tests → does not require medical infrastructur

○ Adapts to test strip misalignment, blood leakage, c

○ Extracted blood features effectively captu Performance:

○ Compentation model enables reading of blood plasma test strips in 10 seconds compared to 24-hour laboratory

Solod tests + does not require medical infrastructure

○ Completes to test strip misalignment, b
	- **Adapts to test strip misalignment**, blood leakage, and irregular lighting conditions
	-
	- relationships in extracted features
	- Predictions have 2.38 mg/dL error and low rate of outliers

-
- Mobile application scales globally; accessible in high incidence rate regions such as sub-Saharan Africa
- Minimal participation from the newborn which is critical in fast-paced clinical environments

- **CONC**

1. Performance:
 \circ Segmentation model enables reading of blood pla

blood tests -> does not require medical infrastructur
 \circ Adapts to test strip misalignment, blood leakage, c
 \circ Extracted blood features **CONCLUSION**

Performance:

○ Segmentation model enables reading of blood plasma test strips in 10 seconds compared to 24-hour laboratory

blood tests → does not require medical infrastructure

○ Extracted blood features blood tests → does not require medical infrastructure $\begin{minipage}[t]{0.5em} \begin{tabular}{l} \textbf{Performance:} \end{tabular} \begin{tabular}{l} \textbf{Performance:} \end{tabular} \end{minipage} \begin{minipage}[t]{0.95\textwidth} \begin{tabular}{l} \textbf{Comcl} \end{tabular} \end{minipage} \begin{minipage}[t]{0.95\textwidth} \begin{tabular}{l} \textbf{S} & \textbf$ **CONCLUSION**

Performance:

○ Segmentation model enables reading of blood plasma test strips in 10 seconds compared to 24-hour laboratory

blood bests → does not require medical infrastructure

Adapts to test strip misali 2. Accessible, Scalable, and Easy-to-Use:

2. Accessible, and Easy-to-Use:

2. Accessible, Scalable, and Easy-to-Use:

2. Accessible, Scalable, and Easy-to-Use:

2. Accessible, Scalable, and Easy-to-Use:

2. Accessible, Sc **Conclusion**

Performance:

○ Segmentation model enables reading of blood plasma test strips in 10 seconds c

blood tests → does not require medical infrastructure

○ Adapts to test strip misalignment, blood leakage, and 1. Performance:

○ Segmentation model enables reading of blood pla

blood tests → does not require medical infrastructur

○ Adapts to test strip misalignment, blood leakage, c

○ Extracted blood features effectively captu Performance:

○ Compentation model enables reading of blood plasma test strips in 10 seconds compared to 24-hour laboratory

Solod tests + does not require medical infrastructure

○ Completes to test strip misalignment, b
	- Adapts to test strip misalignment, blood leakage, and irregular lighting conditions
	-
- relationships in extracted features blood tests → does not require medical infrastructure

Adapts to test strip misalignment, blood leakage, co

Extracted blood features effectively capture yellow

o Stronger 83% correlation with gold standard com

relation
	- Predictions have 2.38 mg/dL error and low rate of outliers

-
- Mobile application scales globally; accessible in high incidence rate regions such as sub-Saharan Africa
- Minimal participation from the newborn which is critical in fast-paced clinical environments

© Adapts to test strip misalignment, blood leakage, and irregular lighting conditions

⊙ Extracted blood features effectively capture yellow-blue axis of bilinubin concentration

© Stronger 83% correlation with gold sta IRL

Hypothesis was proved: machine learning model was able to find relationships in extracted features useful for bilirubin prediction at low financial and temporal cost.

Discussion and Future Work

Integration with Digital Health Service

Limitations

• Accuracy tapers at high TSB \rightarrow can be solved through Bayesian inference

Clinical Trials

- Pursue stringent clinical trials with the Doctors for You NGO in India
- Scale: 9 hospitals, 4 states, 500 births per severe J **month**
	- + partner universities in Nigeria and Egypt

Digital Health Services

- Pregnancy Care **BiliNet BiliNet State BiliNet With AI SMS services** for
Pregnancy Care **BiliNet State of Contextural maternal and peopatal bealth** • Accuracy tapers at high TSB \rightarrow can be
solved through Bayesian inference
Clinical Trials
• Pursue stringent clinical trials with the
Doctors for You NGO in India
• Scale: 9 hospitals, 4 states, 500 births per
month
• + contextual maternal and neonatal health support in low-resource settings • Pursue stringent clinical trials
• Doctors for You NGO in India
• Scale: 9 hospitals, 4 states, 500 births per
• month
• + partner universities in Nigeria and Egypt
• Digital Health Services
• Integrate BiliNet with AI
	- million mothers connected)

References

[1] C. G. Scrafford, L. C. Mullany, J. Katz, S. K. Khatry, S. C. LeClerq, G. L. Darmstadt, and J. M. Tielsch, "Incidence of and risk factors for neonatal jaundice among newborns in southern Nepal," Tropical Medicine & International Health, vol. 18, no. 11, pp. Serum Bilirubin Prediction for Neonates using 1317–1328, Nov. 2013.

[2] M. Johnston and R. R. Ravindran, "Jaundice," Surgery (Oxford), vol. 41, no. 6, pp. 334–341, Jun. 2023.

[3] A. W. Khan, P. Bhatt, P. Y. Yagnik, M. Ayensu, N. A. Adjetey, A. A. Agyekum, N. S. Bhatt, K. Donda, and F. M. Dapaah-Siakwan,
"Trends in Hospitalization for Neopatal laundice and Kernicterus in the United States 2006–2 "Trends in Hospitalization for Neonatal Jaundice and Kernicterus in the United States, 2006-2017," Pediatrics, vol. 147, no. 3 Meeting Abstract, pp 744–745, Mar. 2021.

[4] G. G. Asefa, T. G. Gebrewahid, H. Nuguse, M. W. Gebremichael, M. Birhane, K. Zereabruk, T. M. Zemicheal, A. Hailay, W. A. Abrha, S. A. Hadera, A. G. Hailu, B. H. Beyene, E. A. Dagnazgi, F. G. Tekulu, and F. Welay, "Determinants of Neonatal Jaundice among Neonates Admitted to Neonatal Intensive Care Unit in Public General Hospitals of Central Zone, Tigray, Northern Ethiopia, 2019: a Case-Control Study," BioMed Research International, vol. 2020, pp. 1–8, Oct. 2020. **NOTE ANTIFORM CONSTRANT CONSTRANT CONSTRANT (IT) CONSTRANT (IT) (IT) (2.6. Scrafford, L.C. Mullany, J. Katz, S. K. Khatry, S. C. LeGlerq, G. L. Darmstadt, and J. M. Telsch, "Incl

1317–1328. Nov. 2013

1317–1328. Nov. 201 Phototograpy (State of Action 19, pp. 19, pp.** IT C. G. Scrafford, L.C. Mullany, J. Katz, S. K. Khatry, S. C. LeClerq, G. L. Darmstadt, and J. M. Telsch, "in
1601/sol. Sol. Norhston and R. Ravindran, "Jaundice" Surgery (Oxford), vol. 41, no. 6, p. 34–341, M. D.
1817–13 features for necorded Jamalice among newborns in southern Nepal," Tropical Medicine & International Health, vol.
1217–1328, Nov 2013, particle among newborns in southern Nepal," Tropical Medicine & International Health, vo 121 M. Norhaton and R. R. Revindram, "Jaundles" Surgery (Oxferd), vol. 41, no. 6, pp. 334–341, Jun. 2023, No. 41, 2023, No. Metting Abstract, pp. 744- 746, Mar, 2021.
Metting Abstract, pp. 744-746, Mar, 2021. Mar Beyen, E. A. Dogmazgi, F. G. Tekulu, and F. Weley, "Determinants of Nenard Bundles.
Abtha, S. A. Hodera. A. Grienlu. B. H Beyen, E. A [13] Co. G. According in November 13 Million and the section of the section of the colour of the section of the sect

among Neontale at chinal to Neontal Intersive Care Unit in Public General Hospitals of Cantral Zone, Tigray, North Elithopia 2019 a Case-Contral Study". BiaMed Research International ol. 2020, pp. 1–8, Oct. 2020.

ISIT. M. Ethiopia 2013 most Content internal of the Most Content internal Admission and Admission and Dialactical Dialactical Technique of Dialactical Dialactical Dialactical Dialactical Jaundice among the Content of Dialactical Di Review and Meta-Analysis. The Stanke M.A. Strand. B.W. Lee Sile Richardon E.M. Kedning, A.M. Sidelappe, and the Sile Review and Meta-Analysis." BM Free Meta-Analysis. 2014.
The Analysis of the 20006 Meta-2020 and Analysis

Thank you to Professor Koenig at Seattle University for guiding my research focus, data acquisition, and asking forward-thinking questions

considerations and assisting with clinical regulations.