

ALS-SynAegis: A Molecular Dynamics Study on TDP-43 Aggregation to Prevent Amyotrophic Lateral Sclerosis Onset

Aryaman Rtunjay Tesla STEM High School Project ID: BCHEM-017

Sammamish, Washington United States

Introduction

Amyotrophic Lateral Sclerosis (ALS) is a progressive onset neurodegenerative disease caused by the mislocalization and aggregation of a DNA-Binding protein, TDP-43.

- Occurs in at least 200,000 people globally, millions of unreported cases
- Mortality rate of 80% in 5 years, 90% in 10 years, and 95% in 20 years

What is unknown?

- 1. No research done in identifying specific aggregation tendencies of TDP-43
 - Specific residue interactions
 - Common aggregate structures and conformations
- 2. No work been done on designing inhibitor to target aggregates and disassemble them
 - Riluzole is only approved drug and causes minimal increase in survival time
 - Created over 30 years ago, non-optimized for TDP-43 aggregates as specific interactions were undeterminable

Figure 1: Prediction of ALS case growth by 2040 (Biogen 2019)

To prevent the onset of ALS, it is crucial to craft an improved inhibitor targeting TDP-43 aggregates, tailored to their specific aggregation patterns identified through a computational study

Research Objectives

Object	ive 1	Unravel specific TDP-43 aggregation tendencies and the structural evolution of aggregates focusing on the following train	ts
	• Res • Res • For • Mos	idue Contact Analysis idue Hydrogen Bonding Analysis mation of β-pleated sheets st prominent aggregate structures	

Objective 2		Design an inhibitor molecule to destabilize TDP-43 aggregates t satisfy the drug criteria specified below:	:hat
Objective 2Statisfy1. Binding Af2. Molecular3. < 12 Hydro4. < 5 Hydro5. logP value6. No Molecular		nding Affinity better than Riluzole plecular mass between 400 and 600 Da (Banks 2009) 12 Hydrogen Bond Donors (Lipinski 1997) 5 Hydrogen Bond Acceptors (Lipinski 1997) gP value < 5 (Lipinski 1997) 6 Molecular Toxicophores present in structure	

Methodology

1. System Setup	2. Box Setup	3. Solvation & Ions	4. Energy Minimization	5. Equilibration	6. Production Run	7. Analysis
• CHARMM36m force field • 22 sodium ions and 28 chloride ions for charge neutralization $\overline{V = \sum_{k,l} k_{k}(b-k_{l})^{2} + \sum_{a,b \neq l} k_{k}(\theta - \theta_{l})^{2} + \sum_{a,b \neq l} k_{a}(1 + \cos(n\phi - \theta_{l}))} + \sum_{a,b \neq l} k_{a}(a - u_{l})^{2} + \sum_{a,b \neq l} k_{a}(a - u_{l})^{2} - 2\left(\frac{R_{alba,l}}{r_{I}}\right)^{0} - 2\left(\frac{R_{alba,l}}{r_{I}}\right)^{0} + \frac{\theta_{l}\theta_{J}}{e_{s}r_{J}}\right)}$ Equation modelling CHARMM36fmrcefield	 Dodecahedron shaped box used for MD Simulations. -70% volume of cubic boxes reduces computational intensity Few solvent molecules used 	 Water molecules as solvent; all atoms simulated Neutralized charge with sodium cations & chloride anions 	 Solvated system energy goes through minimization Alleviates steric clashes Utilized steepest descent Minimization ran for 6 ps 	 First stage: Protein Restriction Second Stage: NVT Ensemble Third Stage: NPT Ensemble Fourth Stage: Removed restraint on protein and equilibrated 	 Equilibrated system used for production simulation 64 replicas, periodic exchanges Captures diverse states and rare events in structure 	 Properties Investigated Structural Stability Tools Used RMSD Gyration Contacts/Hbonds End-to-End Vectors

Aggregation Tendencies

- 1. Residue Contact Mapping
 - Primary contacts between 311-MNFGAF-316
 - Found high contacts on PHE-313,316
 - No significant difference in parallel vs antiparallel contact maps
- 2. Hydrogen Bond Mapping
 - Primary contacts between 312-NFGAFS-317
 - Found most hydrogen bonds on ASP-312 and on SER-317
 - Precise target site can now be determined
- 3. RMSD Clustering Analysis
 - Hexamer showed dimeric interactions coming together to form one large aggregate
 - Dimer clusters: ~1-2 beta sheets → High structural stability
- 4. Cosine Angle
 - Most probable states at 0 to 75 degrees
 - Signifies most beta sheets formed are parallel

Baseline Docking Analysis

- Previous studies describe 100 molecules able to reduce TDP-43 toxicity
 - Analyzed molecules based on reported ALS subsystem and effectiveness in destabilizing TDP-43 aggregates
 - 5 molecules selected for docking analysis in AutoDock Vina
- Tested chosen molecules on most commoाम₃c´ aggregate from the 40 billion simulated structures

Methylene Blue

AIM4

Inhibitor Design

- Best molecules from baseline ranked
- Specific groups chosen from baseline for initial inhibitor design
- 12 iterations to create final inhibitor
- Candidate groups for Inhibitor:
 - 1. Phenothiazine
 - 2. Cyclopentane Ethyl Propane
 - 3. Carboxyl Group
 - 4. Methyl/Ethyl Group
 - 5. Nitrile Group

H₂N

N

6. Hydroxyl Group

OH

ALS-SynAegis

Results: Affinity Analysis

Molecule	Highlighted Trait	ALS-SynAegis Improvement	
Methylene Blue	Clinical Trials	36%	
Hydroxyquinoline	BBB Permeability	38%	
Riluzole	FDA Approved	55%	
AIM4	Computational	62%	
Curcumin	Natural Inhibitor	111%	

ALS-SynAegis

Hydroxyquinoline

Results: Toxicity Analysis

- Toxicity Results (Compared to Riluzole)
 - 35% reduction in overall toxicity
 - 20% increase in categories showing safety
 - 36% decrease in categories showing toxicity
- Potential Side Affects
 - 19% reduction in Interstitial Lung Disease
 - 42% reduction in Liver Injury

Molecule	Toxicity Score
ALS-SynAegis	0.156
Riluzole	0.239
Methylene Blue	0.348
Hydroxyquinoline	0.259
Curcumin	0.191
AIM4	0.141

Category	ALS-SynAegis	Riluzole
Liver Injury	0.58	1.0
Respiratory Disease	0.81	1.0
T. Pyriformis	0.73	0.99
Fathead Minnow	0.67	0.98
NR-AhR	0.02	0.95
NR-GR	0.34	0.76
NR-TR	0.26	0.68

■ ALS-SynAegis ■ Riluzole

Retrosynthesis Verification

- 14 possible synthesis pathways discovered
- Average pathway 6-7 steps long
- Average confidence of 72% across all possible pathways
- 34% average yield across all steps, 47% yield on final synthesis step
- Overall classification as high confidence of synthesis occurring
- Only 4 total initial products required for full formation of molecule

Conclusion

- Discovered novel features of TDP-43 aggregates such as:
 - Found most common contacting and hydrogen bonding residues in the aggregate
 - Unveiled that beta sheet direction does not cause a significant affect in aggregate formation
 - Discovered novel target site for inhibitor molecules
- Computationally developed a novel compound that:
 - Inhibits TDP-43 aggregation
 - Better drug-like properties and binding affinities than current inhibitors
 - Predicted to be less cytotoxic than FDA approved drug

Inhibitor Criteria	Passed?	Value
Binding Affinity (kcal/mol) better than Riluzole	\checkmark	-7.7
Between 400-600 Da molecular mass	\checkmark	502.2
< 12 Hydrogen Bond Donors	\checkmark	5
< 10 Hydrogen Bond Acceptors	\checkmark	8
logP < 5	\checkmark	0.98
No Molecular Toxicophores Found	\checkmark	0

Molecular Toxicophores ()

0=N(~0)a	Absent
a[NH2]	Absent
a[N;X2]=0	Absent
CO[N;X2]=O	Absent
N[N;X2]=0	Absent
01[c,C]-[c,C]1	Absent
C1NC1	Absent
N=[N+]=[N-]	Absent
C=[N+]=[N-]	Absent
N=N-N	Absent
c[N;X2]!@;=[N;X2]c	Absent
[OH,NH2][N,O]	Absent
[OH]Na	Absent
[Cl,Br,I]C	Absent
[Cl,Br,I]C=0	Absent
[N,S]!@[C;X4]!@[CH2][Cl,Br,I]	Absent
[cH]1[cH]ccc2c1c3c(cc2)cc[cH][cH]3	Absent
[cH]1cccc2c1[cH][cH]c3c2ccc[cH]3	Absent
to 18 of 36 entries	Previous 1 2 N

Molecular Toxicophores ()

entries	Search:
Toxicophore SMARTS	Molecular Toxicophore Verification
a[NH2]	Present
0=N(~0)a	Absent
a[N;X2]=0	Absent
C0[N;X2]=0	Absent
N[N;X2]=O	Absent
01[c,C]-[c,C]1	Absent
C1NC1	Absent
N=[N+]=[N·]	Absent
C=[N+]=[N-]	Absent
N=N-N	Absent
c[N;X2]!@;=[N;X2]c	Absent
[OH,NH2][N,O]	Absent
[OH]Na	Absent
[Cl,Br,I]C	Absent
[Cl,Br,I]C=0	Absent
[N,S]!@[C;X4]!@[CH2][Cl,Br,I]	Absent
[cH]1[cH]ccc2c1c3c(cc2)cc[cH][cH]3	Absent
[cH]1cccc2c1[cH][cH]c3c2ccc[cH]3	Absent
o 18 of 36 entries	Previous 1

Key References

- NIH ALS. Amyotrophic lateral sclerosis (als), 2023. URL <u>https://www.ninds.nih.gov/health-information/disorders/amyotrophic-lateral-sclerosis-als.</u>
- Rachel Atkinson, Jacqueline Leung, James Bender, and Matthew Kirkaldie. Tdp-43 mislocalization drives neurofilament changes in a novel model of tdp43 proteinopathy, Feb 2021. URL <u>https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7888715/</u>.
- James A Austin, Gareth S A Wright, Seiji Watanabe, and S Samar Hasnain. Disease causing mutants of tdp-43 nucleic acid binding domains are resistant to aggregation and have increased stability and half life, 2014. URL https://europepmc.org/article/PMC/9MC3964094.
- Fang Bai, Xiaofeng Liu, Jiabo Li, Haoyun Zhang, Hualiang Jiang, Xicheng Wang, and Honglin Li. Bioactive conformational generation of small molecules: A comparative analysis between force-field and multiple empirical criteria based methods - bmc bioinformatics, Nov 2010. URL
 - https://bmcbioinformatics.biomedcentral.com/articles/10.1186/1471-2105-11-545.
- William A Banks. Characteristics of compounds that cross the blood-brain barrier- bmc neurology, Jun 2009. URL https://bmcneurol.biomedcentral.com/articles/10.1186/1471-2377-9-S1-S3.
- Britt A. Berning and Adam K. Walker. The pathobiology of tdp43 c-terminal fragments in als and ftld, Mar 2019. URL https://www.frontiersin.org/articles/10.3389/fnins.2019.00335/full.
- Eva Bruhova and Boris S Zhorov. Montecarlo-energy minimization of correolide in the kv1.3 channel: Possible role
 of potassium ion in ligand receptor interactions bmc structural biology, Jan 2007. URL
 https://bmcstructbiol.biomedcentral.com/articles/10.1186/1472-6807-7-5.
- Gov CDC. Amyotrophic lateral sclerosis, Apr 2017. URL <u>https://www.cdc.gov/als/WhatisALS.html</u>. Mayo Clinic. Multiple sclerosis, Dec 2022. URL <u>https://www.mayoclinic.org/diseases-conditions/multiple-sclerosis/symptoms-causes/syc-20350269</u>.
- C CompChems. Molecular dynamics: Ensembles, Jul 2022. URL <u>https://www.compchems.com/ molecular-dynamics-ensembles</u>
- S P Craig and A Eakin. Structure-based inhibitor design, 2000. URL <u>https://pubmed.ncbi.nlm.nih.gov/10668398</u>.
- DO Mazen Elkurd. The promise of gene therapies for the management of parkinson disease: Mazenelkurd, do, Aug 2023. URL https://www.neurologylive.com/view/promise-gene-therapies-management-
- Parkinson-disease-mazen-elkurd.Liberty Francois-Moutal, David Donald Scott, and May Khanna. Direct targeting of tdp-43, from small molecules to biologics: The therapeutic landscape, Jun 2021. URL nhttps://pubs.rsc.org/en/content/articlehtml/2021/cb/d1cb00110h.
- Angelo Gavezzotti, Leonardo Lo Presti, and Silvia Rizzato. Molecular dynamicssimulation of organic materials: Structure, potentials and the micmos computer21platform, Dec 2021. URL <u>https://pubs.rsc.org/en/content/articlelanding/2022/ce/d1ce01360b#</u>!
- Yunhui Ge, Gaetano Calabro, ChristopheBayly, and David Mobley. Sensitivity of molecular dynamics simulations to equilibration scheme ...2021. URL <u>https://chemrxiv.org/engage/chemrxiv/articledetails/6137b2ff65db1e9d5faf212e</u>.
- NCBI Gene. Tardbp tar dna binding protein [homo sapiens (human)] gene ncbi,2024. URL https://www.ncbi.nlm.nih.gov/gene/23435.
- Mehdi Ghasemi and Robert H Brown. Genetics of amyotrophic lateral sclerosis,2018. URL https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5932579/.
- Amandeep Girdhar, Vidhya Bharathi, Vikas Ramyagya Tiwari, and SumanAbhishek. Computational insights
 intomechanism of aim4-mediated inhibition of aggregation of tdp-43 protein implicatedin als and evidence for in
 vitro inhibitionof liquid-liquid phase separation (IIps) of tdp-432c-a315t by aim4, 2020. URL
 <u>https://pubmed.ncbi.nlm.nih.gov/31917988/</u>.
- MA Gitcho. Tdp-43 a315t mutation infamilial motor neuron disease, 2008. URLhttps://pubmed.ncbi.nlm.nih.gov/18288693/.Eva-Maria Hock.
- Stefanie jonaswins elisa izaurralde award bythe rna society, Dec 2023. URLhttps://nccr-rna-anddisease.ch/news/newsletter/no-11/austrian-swiss-rna-meeting-1-1.
- Jing Huang, Sarah Rauscher, GrzegorzNawrocki, Ting Ran, Michael Feig, Bert Lde Groot, Helmut Grubm"uller, andAlexander D MacKerell. Charmm36m:An improved force field for folded and intrinsically disordered proteins, Nov2016. URL <u>https://www.nature.com/articles/nmeth.4067</u>.