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Agriculture has a huge environmental impact, and with climate change, labor shortages, and a rise 
in global food demand, agriculture needs to become more efficient and effective.

Farmers struggle to monitor and maintain plant health (plant anomalies such as pests, weeds, 
disease) efficiently and sustainably. 40% of global crop production lost to plant pests and 
disease, costing $220 billion annually.

With limited time and knowledge, manual surveillance for plant anomalies is difficult for farmers, 
resulting in excessive and indiscriminate use of fertilizers and pesticides.

Agricultural chemicals emit N2O and CH4 (greenhouse gases that are 300x more potent than 
CO2), increase production costs, and harm wildlife and ecosystems. $60 billion is spent on 
pesticides annually. Pesticide residues on food lead to 20,000+ new cases of cancer every year. 
Contamination in nature results in 80+ million fish and bird deaths annually.

Need for low-cost automation to monitor plant anomalies that is affordable for low-income 
farmers to manage large farms at scale

Dimension Existing Work LeAF

Solution Type Classification Only Classification & Bounding Box

Accuracy 30-40% 90%+

Extensibility Only Specific Plants/Anomalies All Plants/Anomalies

Model Size 20-100 million parameters 3 million parameters

Natural Language 
Interaction?

No Fluent and Knowledgeable

Deployment No Yes

Is it possible to automate plant anomaly 
detection and classification for farmers, reduce 
chemical usage, and provide targeted treatment 

suggestions using Convolutional Neural 
Networks (CNNs) and Large Language Models 

(LLMs)?

Multimodal

Interactable

Lightweight & 
Accurate

Deployable

Current solutions lack comprehensive features such as bounding boxes for localization, have low 
accuracy rates, and are limited to specific plant anomalies. These solutions rely on large models, 
making them computationally intensive and unsuitable for low-power devices. Moreover, they lack 
natural language interaction and explanatory capabilities for farmers. Additionally, they are not 
end-to-end and do not support robot automation for deployment in real farm scenarios.

Research Question

Engineering Goals

Dataset

I collected 10,000 images from 
iNaturalist (initial focus on pests). I also 
did some data filtering and cleaning 
based on image quality, research 
grade, number of validations.

Distilled Model for Mobile Devices

I chose the 10 most harmful agricultural pests in US for 
Corn and Soybean, the most grown crops. Dataset comprises 
about 1,000 images per class with an 80%-10%-10% train, 
validation, and test split.

I used GroundingDINO to annotate the images with insect 
bounding boxes and trained a ResNet-18 classification model.

The image initially goes to GroundingDINO for bounding box, 
then cropped image goes to ResNet-18 for classification.

I iteratively trained, tested, and tuned hyperparameters to increase 
accuracy from ~65% initially to ~91% finally.

The model performed well on test images and was able to successfully 
detect and classify small and camouflaged pests. I analyzed performance 
on the following cases:

Similar Background Color (Bean Leaf Beetle, Southern CRW), Small 
and Blending with Background (Northern CRW), Extreme 
Camouflage (Grasshopper), and different orientations/angles.

Prediction was taking ~3 seconds per image on an Nvidia T4 GPU, with 
majority time spent on GroundingDINO model.

This created an opportunity for a lightweight model to run on a robot with 
low compute and fast enough to keep up with video feed.

Figure 1: Agriculture Environmental Resource Use  
Figure 2: Agriculture 

Greenhouse Gas Emissions
Figure 3: Farmers spraying 

pesticides on fields

Table 1: Comparison of LeAF to existing research on classifying plant anomalies

LeAF aims to use CNNs and LLMs to provide an end-to-end 
solution for farmers to identify and treat plant anomalies. Figure 4: Sample detections & 

classifications for pests, weeds, & disease

Figure 5: Dataset Class 
Image Comparison

Figure 6: LeAF model pipeline and structure (Image → Classification and Detection Model → Object Tracking → Field Array → Large Language Model → Output Treatment Suggestions)

Figure 7: Sample detections and classifications from the initial model pipeline with GroundingDINO & ResNet-18 

Figure 8: ResNet-18 model structure with convolutional and pooling layers 

Table 2: Hyperparameter tuning steps to increase accuracy.
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Model Metrics and Formulas

Figure 9: Training and Validation Loss (Lower 
is better, decreases with more epochs.)

Figure 10: Training and Validation Accuracy 
(Higher is better, increases with more epochs.)

Prediction time of 3 seconds per image even on a 
high-performance GPU meant that the solution 
needed to use a smaller model in order to run on 
a video feed on edge devices (like robots that 
have low compute.

I decided to train a model with less parameters 
(student model) on the dataset annotated by the 
initial model pipeline (teacher model). This 
process is known as model distillation. The goal 
was to get similar accuracy with a smaller size.

For this, I used YOLOv8n (Nano), a smaller 
model (distilled from the larger model pipeline) 
that provided both detection and classification 
output and is capable of running on low compute 
devices. 

I trained the YOLOv8n model with bounding box 
data from GroundingDINO coupled with my 
trained ResNet-18 for class labels.

ResNet-18 has 11 million parameters and 
GroundingDINO has 172 million parameters, 
while YOLOv8n only has 3.2 million parameters.

So, the resulting custom-trained model had 
similar accuracy at only 0.17% of parameters as 
original pipeline and took only ~30msec for 
prediction per image (100x improvement), 
allowing it to run on video captured by robot.

𝑚𝐴𝑃 = 	0.815

Distilled Model Metrics

𝑅𝑒𝑐𝑎𝑙𝑙 = 	81.30%

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 = 93.80%

𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 = 95.90%

Figure 11: Confusion Matrix (Darker diagonal indicates better performance) Figure 12: Sample detections and classifications from the custom-trained and distilled YOLOv8n model

Figure 13: Box, Class, and Object Loss (Lower is better, decreases with more epochs) Figure 14: YOLOv8 model structure with convolutional and pooling layers 

Field Mapping
The YOLOv8 model runs on the robot 
camera feed as it traverses the field.

On top of this, I implemented an object 
tracking algorithm to count detected pests 
and compute how many have been detected 
at field level.

I also added a class to detect plant stems. 
With this, we count the number of pests 
between plant stem detections to get plant-
specific anomaly counts. These counts are 
stored in 2D-matrix (Field Detections 
Array) where each element represents the 
number of pests on that plant in the field.

This allows mapping at field level to find infestation clusters. Farmers see the map and can focus treatment.

I wanted to add natural language and multimodal interaction with the farmer. For this, I fine-tuned the Google 
Gemini Large Language Model (LLM) with sample field array prompts, farmer questions, pest images, and 
example outputs I created. This enables the farmer to obtain analysis of infestations based on the field map 
and treatment suggestions. The farmer can also ask questions to the LLM for more insights.

I built this into a web tool to provide personalized estimates to the farmer on their financial, chemical, and 
emissions savings based on farm-specific usage data.

Figure 15: Sample Plant Stem Detection Counts

Figure 16: Web tool to provide LeAF savings estimates Figure 17: Sample Multimodal Farmer LLM Interaction

I have deployed LeAF using my custom-
made BRANCH Robot (Budget-
friendly Robot for Agricultural 
Nonintrusive Crop Photography).
 
Existing commercial robots like 
EarthSense TerraSentia cost $5,000+ 
and require complex robot infrastructure 
(inaccessible to most farmers). I made 
BRANCH as an accessible way to deploy 
LeAF under $500.

BRANCH is a rugged robot drivetrain with 
tripod and brain with sensors for manual 
and auto navigation. Farmers can attach 
their phone on which the YOLOv8n 
model runs in the LeAF mobile app.

Figure 18: Custom-built BRANCH Robot Figure 19: Deployment with Farmers

I am currently working with Washington State farms (Nelson Farms – Farmington, WA and Dancing 
Crow Farm – Carnation, WA) and have partnered with SnoValley Tilth, a nonprofit organization of 80+ 
farmers and meet with farmers weekly. I am also working with the WSDA and USDA to expand across the 
USA and eventually globally.

Future Research
Can this structure be expanded to 
3,000+ pests in a single model?

 Can Aerial/Drone imagery be 
leveraged on dense/rough terrain 

farms?

 Can data from soil moisture/humidity 
sensors correlate with and predict 

future pest infestations?

LeAF utilizes recent AI/ML advancements like Convolutional 
Neural Networks and Large Language Models to offer an end-
to-end solution for monitoring plant anomalies with plant 
anomaly detection and classification, field mapping, 
suggestions for treatment, detailed savings estimates, and 
BRANCH robot-based deployment. LeAF is effective and 
efficient with high accuracy (95+%). LeAF aims to reduce 
costs, chemical usage, and environmental impact for 
farmers while maximizing crop health, yield, and productivity.

LeAF has the potential to revolutionize agriculture and 
empower farmers to efficiently produce food that has no 
negative impact on the environment.


