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Agriculture has a huge environmental impact, and with climate change, labor shortages, and a rise
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Farmers struggle to monitor and maintain plant health (plant anomalies such as pests, weeds, validation, and test split. Treatment number of pests on that plant in the field. Figure 15: Sample Plant Stem Detection Counts
disease) efficiently and sustainably. 40% of global crop production lost to plant pests and Farmer Suggestions Thi : : L .
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resulting in excessive and indiscriminate use of fertilizers and pesticides.

then cropped image goes to ResNet-18 for classification. Figure 6: LeAF model pipeline and structure (Image - Classification and Detection Model = Object Tracking = Field Array = Large Language Model - Output Treatment Suggestions)
| wanted to add natural language and multimodal interaction with the farmer. For this, | fine-tuned the Google
Gemini Large Language Model (LLM) with sample field array prompts, farmer questions, pest images, and
example outputs | created. This enables the farmer to obtain analysis of infestations based on the field map
and treatment suggestions. The farmer can also ask questions to the LLM for more insights.

Agricultural chemicals emit N,O and CH, (greenhouse gases that are 300x more potent than
CO,), increase production costs, and harm wildlife and ecosystems. $60 billion is spent on
pesticides annually. Pesticide residues on food lead to 20,000+ new cases of cancer every year.
Contamination in nature results in 80+ million fish and bird deaths annually.
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Existing  commercial robots  like
EarthSense TerraSentia cost $5,000+
and require complex robot infrastructure
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Figure 13: Box, Class, and Object Loss (Lower is better, decreases with more epochs) Figure 14: YOLOv8 model structure with convolutional and pooling layers



