Deciphering a Sleeping Pathogen: Uncovering Novel Transcriptional Regulators of Hypoxia-Induced Dormancy in Mycobacterium Tuberculosis # **Background: Introducing Mycobacterium Tuberculosis** # Tuberculosis (TB): Bacterial Infection - Spread through the inhalation of cough/sneeze droplets. - As a result of this invasion... - Foreign bacteria invade host immune system. - Trigger airway inflammation in lungs. - Spread to other organs in the human body. Project Premise: HypoxiaInduced Dormancy Deletion of TFs thought crucial to dormancy only conferred mild growth defects. Several modeling techniques have been used to simulate oxygen depletion, which makes synthesizing findings considerably difficult. Experimental attempts at directed gene disruption and protein localization give way to **questionable results**. Current understanding of the MTB genetic architecture is highly insufficient. Modeling TB infection can be more rigorously achieved with a **computational approach**. Goal: To uncover transcriptional agents and regulatory mechanisms that control the transition of MTB in and out of dormancy. # <u>#1:</u> Literature Review <u>#2:</u> Key Takeaways # #3: Research Objective # **High-Level Methodology** Compose an **aggregate hypoxia dataset** from several RNA-seq and microarray experiments in vivo. 2 Infer a gene regulatory network (GRN) based on these observations. Apply **downstream analyses** to unearth interesting transcriptional dynamics. # The Three-Phase Approach Making the Aggregate Data **Three Transcriptome Datasets** (Hypoxic Time Course Experiments): - <u>GSE43466</u> [Rustad et al., 2008] - <u>GSE9331</u> [Galagan et al., 2013] - Unpublished Study @ UW Sherman Lab **Aggregation Results** **Biplot** **PCA Plot** Dendrogram The Data Processing Workflow # **Incorporating the TRIP Dataset** #### **Hypoxia TRIP Screen:** - ☐ Tracked 207 TFI Strains under several forms of environmental stress. - ☐ Abundance Fold Change (Uninduced v. Induced). - Method: Comparisons between log-phase abundance FCs to those at hypoxia and reaeration treatment. Goal: Identify phenotypically relevant TFs that undergo significant growth abundances or defects in the transition from steady-state to hypoxic conditions. * Log2FC >= 1.5 used as the cutoff for statistical significance. ## **TRIP Data Analysis** The set of growth abundance (GA) and growth defect (GD) TFs associated with hypoxia. | | | • • • | | | | | |---|-----------|-------|----------------|--------|-------|--| | | Regulator | UT_FC | HYP_FC | OVR_FC | Class | | | | Rv0767c | -6.02 | 1.909 | 7.929 | GA | | | | Rv2034 | -2.31 | 1.88 | 4.19 | GA | | | | Rv1151c | -0.17 | 1.62 | 1.79 | GA | | | ĺ | Rv1776c | -6.09 | -1.61 | 4.479 | GD | | | | Rv2642 | 1.13 | -1.689 | 2.819 | GD | | | | Rv2009 | 0.6 | - 1.81 | 2.41 | GD | | | | Rv2359 | 0.45 | -1.909 | 2.359 | GD | | | | Rv1152 | 0.49 | - 1.869 | 2.359 | GD | | | | Rv1473A | 0.77 | - 1.57 | 2.34 | GD | | | | Rv0821c | 0.56 | - 1.57 | 2.13 | GD | | | | Rv3291c | 0.46 | -1.609 | 2.069 | GD | | | | Rv0491 | 0.37 | - 1.63 | 2.0 | GD | | | | Rv0144 | 0.5 | -1.5 | 2.0 | GD | | | | Rv3160c | 0.23 | -1.65 | 1.88 | GD | | | | | | | | | | UT=Untreated, HYP=Hypoxia, OVR=ABS(UT-HYP) | GO Term | Overlap | P-Value | Genes | Phenotypic Relevance | |---|---------|----------|--|---| | Peptidoglycan
Biosynthetic Process | 8/15 | 0.003567 | Rv2154c; Rv1086; Rv3682; Rv3794;
Rv2152c; Rv0483; Rv0050; Rv1018c. | The peptidoglycan layer is essential for maintaining cellular integrity and forming a permeability barrier. | | Proton-Transporting ATP Synthase Activity | 6/8 | 0.034982 | Rv1309; Rv1311; Rv1307; Rv1310;
Rv1308; Rv1306. | Protonmotive force is required for maintaining ATP homeostasis and viability of hypoxic MTB. | | <u>Cell Redox</u>
<u>Homeostasis</u> | 5/12 | 0.002969 | Rv1470; Rv1471; Rv0688;
Rv1324; Rv1677. | Preservation of an appropriate redox balance is critical to the persistence of MTB. | | Fatty Acid
Biosynthetic Process | 7/17 | 0.048612 | Rv3825c; Rv1484; Rv2524c;
Rv0533c; Rv1094; Rv2244; Rv2246. | Macrophage fatty acid metabolism is needed to supplement MTB survival in hypoxia. | | Response to Stress | 8/14 | 0.013853 | Rv3223c; Rv2028c; Rv3134c;
Rv2374c; Rv2624c; Rv0576;
Rv0982; Rv2035. | An indicator that bacteria are sensing and adapting to the anaerobic environment. | ^{*} Enrichment analysis was performed with the Enrichr API of GSEAPy; an adjusted **P-Value cutoff of <= 0.05** was used to determine statistical significance. # Investigating the Rv0821c-Rv0144 Crosstalk #### Shared Target Components Between Rvo821c and Rvo144 | Target | Functional Description | Category | |---------|--|--| | Rv1184c | Essential for PAT lipid biosynthesis, which is a significant constituent of the mycobacterial cell wall. | Cell Wall and Cell Processes | | Rv0206c | MmpL3 protein is a transmembrane transporter of mycolic acid; long chain fatty acids found in the lipid-rich cell walls of tuberculosis bacterium. | Cell Wall and Cell Processes | | Rv3804c | Refers to proteins of the antigen 85 complex that contribute to the biogenesis of trehalose dimycolate, a dominant structure required for cell wall integrity . | <u>Lipid Metabolism</u> | | Rv3487c | Lipolytic enzyme LipF involved in cellular metabolism. | Intermediary Metabolism
and Respiration | | Rv2219 | Probable conserved transmembrane protein. | Cell Wall and Cell Processes | | Rv1832 | Glycine cleavage system that catalyzes the degradation of glycine, which has been implicated in the biosynthesis of peptidoglycan and other cell wall structural components . | Intermediary Metabolism and Respiration | | Rv1196 | Resembles PPE18, a cell wall associated protein that is involved in inflammatory response and cytokine manipulation. | <u>PE/PPE</u> 3 | **Rv0821c (PhoY2):** Inactivation leads to antibiotic resistance; maintains inorganic phosphate homeostasis; stress response. **Rv0144:** Shown to be regulated by ReIA, critical for establishing persistent infection in mice. **Takeaway:** A dual mechanism of mycobacterial persistence linked to cell wall synthesis and intracellular transport. ## Characterizing the Rv2359-Rv1152 Relationship | Regulator | UT_FC | HYP_FC | OVR_FC | Class | |-----------|-------|----------------|--------|-------| | Rv2359 | 0.45 | -1.909 | 2.359 | GD | | Rv1152 | 0.49 | - 1.869 | 2.359 | GD | Strong expression- and phenotypic-based correlations, along with GRN connectivity, indicate a **potential relationship**. ion-respondent homeostasis mechanism that is effectively downregulated during hypoxia. As a result, pathogen would have more time to make anticipatory The Rv1152-Rv2359 connection could function as a metal make anticipatory adaptations to future host immune response and build resistance to oxidative stress. ### **Discussion & Conclusion** #11 - MTB dormancy in hypoxia shown to be functionally associated with <u>stress response</u>, <u>cell redox homeostasis</u>, <u>metal ion cycling</u>, and <u>cell wall metabolism</u> all of which modulate critical **host-pathogen interactions**. - Unraveling Transcriptional Regulatory Mechanisms - □ Rv0821c-Rv0144: Dual System of Persistence (Via Cell Wall Synthesis) - ☐ Rv1152-Rv2359: Delayed Zinc Limitation Enables Anticipatory Adaptations - Investigating Key Factors of Interest - ☐ Nutritional Immunity - Defense Antioxidants Counter Pro-Inflammatory Cytokines - ➤ **Incorporate reaeration data** (7D to 12D) to catalog other physiological adjustments during reintroduction to the stationary phase. - Apply the **DREM 2.0 approach**, which identifies <u>bifurcation points</u> that track transitions between coordinated regulatory programs and gene states. Future Directions Results Experimental Data Restricted to the **Defined Hypoxic Model** Lack of **Gold Standard Data** to Supplement GRN Construction Limitations # References Abdi, H., & Williams, L. J. (2010). Principal component analysis. Wiley interdisciplinary reviews: computational statistics, 2(4), 433-459. Balázsi, G., Heath, A. P., Shi, L., & Gennaro, M. L. (2008). The temporal response of the Mycobacterium tuberculosis gene regulatory network during growth arrest. *Molecular systems biology*, 4(1), 225. Brennan, P. J. (2003). Structure, function, and biogenesis of the cell wall of Mycobacterium tuberculosis. Tuberculosis, 83(1-3), 91-97. Canneva, F., Branzoni, M., Riccardi, G., Provvedi, R., & Milano, A. (2005). Rv2358 and FurB: two transcriptional regulators from Mycobacterium tuberculosis which respond to zinc. *Journal of bacteriology*, 187(16), 5837-5840. Castro, M. A., Wang, X., Fletcher, M. N., Markowetz, F., & Meyer, K. B. (2013). Vignette for RTN: reconstruction of transcriptional networks and analysis of master regulators. Dahl, J. L., Kraus, Č. N., Boshoff, H. I., Doan, B., Foley, K., Avarbock, D., ... & Barry III, C. E. (2003). The role of RelMtb-mediated adaptation to stationary phase in long-term persistence of Mycobacterium tuberculosis in mice. *Proceedings of the National Academy of Sciences*, 100(17), 10026-10031. Dow, A., Sule, P., O'Donnell, T. J., Burger, A., Mattila, J. T., Antonio, B., ... & Prisic, S. (2021). Zinc limitation triggers anticipatory adaptations in Mycobacterium tuberculosis. PLoS pathogens, 17(5), e1009570. Emmert-Streib, F., Dehmer, M., & Haibe-Kains, B. (2014). Gene regulatory networks and their applications: understanding biological and medical problems in terms of networks. Frontiers in cell and developmental biology, 2, 38. Fang, Z., Liu, X., & Peltz, G. (2022). GSEApy: a comprehensive package for performing gene set enrichment analysis in Python. Bioinformatics. Galagan, J. E., Minch, K., Peterson, M., Lyubetskaya, A., Azizi, E., Sweet, L., ... & Schoolnik, G. K. (2013). The Mycobacterium tuberculosis regulatory network and hypoxia. Nature, 499(7457), 178-183. Harper, J., Skerry, C., Davis, S. L., Tasneen, R., Weir, M., Kramnik, I., ... & Jain, S. K. (2012). Mouse model of necrotic tuberculosis granulomas develops hypoxic lesions. *Journal of Infectious Diseases*, 205(4), 595-602. Johnson, W. E., Li, C., & Rabinovic, A. (2007). Adjusting batch effects in microarray expression data using empirical Bayes methods. *Biostatistics*, 8(1), 118-127. Kapopoulou, A., Lew, J. M., & Cole, S. T. (2011). The MycoBrowser portal: a comprehensive and manually annotated resource for mycobacterial genomes. Tuberculosis, 91(1), 8-13. Ma, S., Morrison, R., Hobbs, S. J., Soni, V., Farrow-Johnson, J., Frando, A., ... & Sherman, D. R. (2021). Transcriptional regulator-induced phenotype screen reveals drug potentiators in Mycobacterium tuberculosis. *Nature microbiology*, 6(1), 44-50. Manjelievskaia, J., Erck, D., Piracha, S., & Schrager, L. (2016). Drug-resistant TB: deadly, costly and in need of a vaccine. Transactions of the Royal Society of Tropical Medicine and Hygiene, 110(3), 186-191. Margolin, A. A., Nemenman, I., Basso, K., Wiggins, C., Stolovitzky, G., Favera, R. D., & Califano, A. (2006, March). ARACNE: an algorithm for the reconstruction of gene regulatory networks in a mammalian cellular context. In BMC bioinformatics (Vol. 7, No. 1, pp. 1-15). BioMed Central. Milano, A., Branzoni, M., Canneva, F., Profumo, A., & Riccardi, G. (2004). The mycobacterium tuberculosis rv2358–furb operon is induced by zinc. *Research in microbiology*, 155(3), 192-200. Mora, B. B., Cirtwill, A. R., & Stouffer, D. B. (2018). pymfinder: a tool for the motif analysis of binary and quantitative complex networks. *BioRxiv*, 364703. Muttucumaru, D. N., Roberts, G., Hinds, J., Stabler, R. A., & Parish, T. (2004). Gene expression profile of Mycobacterium tuberculosis in a non-replicating state. *Tuberculosis*, 84(3-4), 239-246. Namugenyi, S. B., Aagesen, A. M., Elliott, S. R., & Tischler, A. D. (2017). Mycobacterium tuberculosis PhoY proteins promote persister formation by mediating Pst/SenX3-RegX3 phosphate sensing. MBio, 8(4), e00494-17. Park, H. D., Guinn, K. M., Harrell, M. I., Liao, R., Voskuil, M. I., Tompa, M., ... & Sherman, D. R. (2003). Rv3133c/dosR is a transcription factor that mediates the hypoxic response of Mycobacterium tuberculosis. Molecular microbiology, 48(3), 833-843. Peddireddy, V., Doddam, S. N., & Ahmed, N. (2017). Mycobacterial dormancy systems and host responses in tuberculosis. Frontiers in immunology, 8, 84. Peterson, E. J., Reiss, D. J., Turkarslan, S., Minch, K. J., Rustad, T., Plaisier, C. L., ... & Baliga, N. S. (2014). A high-resolution network model for global gene regulation in Mycobacterium tuberculosis. *Nucleic acids research*, 42(18), 11291-11303. Rao, Y., Lee, Y., Jarjoura, D., Ruppert, A. S., Liu, C. G., Hsu, J. C., & Hagan, J. P. (2008). A comparison of normalization techniques for microRNA microarray data. Statistical applications in genetics and molecular biology, 7(1). Russell, D. G. (2001). Mycobacterium tuberculosis: here today, and here tomorrow. Nature reviews Molecular cell biology, 2(8), 569-578. Rustad, T. R., Harrell, M. I., Liao, R., & Sherman, D. R. (2008). The enduring hypoxic response of Mycobacterium tuberculosis. PloS one, 3(1), e1502. Rustad, T. R., Sherrid, A. M., Minch, K. J., & Sherman, D. R. (2009). Hypoxia: a window into Mycobacterium tuberculosis latency. Cellular microbiology, 11(8), 1151-1159. Shi, W., & Zhang, Y. (2010). PhoY2 but not PhoY1 is the PhoU homologue involved in persisters in Mycobacterium tuberculosis. Journal of Antimicrobial Chemotherapy, 65(6), 1237-1242. Skok Gibbs, C., Jackson, C. A., Saldi, G. A., Tjärnberg, A., Shah, A., Watters, A., ... & Bonneau, R. (2022). High-performance single-cell gene regulatory network inference at scale: the Inferelator 3.0. Bioinformatics, 38(9), 2519-2528. Voskuil, M. I., Bartek, I. L., Visconti, K., & Schoolnik, G. K. (2011). The response of Mycobacterium tuberculosis to reactive oxygen and nitrogen species. Frontiers in microbiology, 2, 105. Wang, C., Mao, Y., Yu, J., Zhu, L., Li, M., Wang, D., ... & Gao, Q. (2013). PhoY2 of mycobacteria is required for metabolic homeostasis and stress response. Journal of bacteriology, 195(2), 243-252. Wang, X., Wang, H., & Xie, J. (2011). Genes and regulatory networks involved in persistence of Mycobacterium tuberculosis. Science China Life Sciences, 54(4), 300-310. Zeng, J., Deng, W., Yang, W., Luo, H., Duan, X., Xie, L., ... & Xie, J. (2016). Mycobacterium tuberculosis Rv1152 is a novel GntR family transcriptional regulator involved in intrinsic vancomycin resistance and is a potential vancomycin adjuvant target. Scientific reports, 6(1), 1-12 #12