Effects of limiting citrate derived Acetyl-CoA production on the development of exhaustion by CD8⁺ T cells

Presentation by Alessandra Azure

Washington AJAS

UPMC | HILLMAN CANCER CENTER

Healthy T cells kill cancer cells. They promote cancer patient survival.

- T cells are part of the adaptive immune system they are specialized
 - CD8⁺ T cells are "killer" T cells that kill virally infected and cancerous cells
 - T cell produce **cytokines**, which are signals cells use to communicate
 - IFN γ and TNF- α are pro-inflammatory

- Exhaustion = hypofunctional state where some anti-tumor effector function is lost
- Associated markers: PD-1, TIM-3

What *causes* T cell exhaustion?

Ma, J. et al. Immunotherapy Cancer, 2019

Chronic activation and the suppressive TME drive T cells to exhaustion.

Conditions of the tumor microenvironment (TME):

- Nutrient insufficiency
- Low oxygen (hypoxia)
- Waste buildup
- Increased presence of inhibitor receptor ligands
- Immunosuppressive Treg cells

 Persistent antigen exposure and the harsh TME cause T cells to become **exhausted**

DePeaux, K., Delgoffe, G.M. Nat Rev Immunol, 2021

Exhausted T cells change the way they produce energy.

- Exhausted T cells lose full mitochondria function
 - Causes metabolic insufficiency
 - Cells shift metabolism to alternate pathways outside mitochondria – possibly *fatty acid synthesis pathway*

- Fatty Acids are one type of nutrient that provides energy to T cells; lipid droplets store fatty acids
 - Dysregulation of the fatty acid synthesis pathway may be detrimental to T cells

Nicole Scharping

Cheon, S. et al. Journal of Molecular Medicine, 2021

Does inhibiting citrate derived Acetyl-CoA production impact the development of exhaustion in CD8⁺ T cells?

Methods: Evaluating ACLYi in vitro

Experiment Goal: Investigate the impact of inhibiting Acetyl-CoA production on the development of exhaustion by CD8⁺ T cells.

ACLYi is an inhibitor of ATP-citrate lyase (ACLY), an enzyme that catalyzes the conversion of citrate to Acetyl-CoA

- T cell receptor (TCR) was activated with α CD3/ α CD28 dynabeads
- 6 day CS period
- ** Media contains ACLYi at appropriate experimental concentration ** (dosage not yet established)
- Analyzed via flow cytometry single cell analysis of surface markers and cytokines

ACLYi and chronic stimulation decrease cell proliferation

As inhibitor concentration increased, cell proliferation decreased, possibly due to *metabolic stress*.

Chronically stimulated cells proliferated less than acutely stimulated cells.

Normalized Cell Growth

No notable change in PD-1 or TIM-3 expression was observed at any inhibitor concentration.

TIM-3 and PD-1 are surface markers associated with T cell exhaustion.

Cytokine production indicates the functional capacity of T cells.

- IFNy and TNF- α are pro-inflammatory cytokines that stimulate an immune response

Observed increase in cytokine production in cell groups treated with 40 μ M ACLYi.

Putting it together

- Limiting Acetyl-CoA production may impact CD8⁺ T cell effector function
 - Sustained cytokine signaling would promote antigen presentation and recruitment of immune cells
- Optimal ACLYi concentration likely lies around 30μM
 - Higher inhibitor concentration = less cell proliferation, more cytokine impact
- May be possible that ACLYi is delaying T cell progression to complete/ terminally differentiated exhaustion

Zhang, J. et al. FASEB, 2021

Future Direction

- Hypoxia repeat testing (1.5% O₂); Microscopy
- In vivo mice tumors
 - Investigate how surface marker expression interacts with cytokine production
 - Combination with anti-PD1 immunotherapy

- *Big Picture*: Make cancer patients' T cells work better for longer
 - Better way of treating cancer
 - Early clinical trial ongoing with similar inhibitor

Metabolism!

Crown Bioscience, 2021

Acknowledgements

Delgoffe Lab

• Dr. Greg

Delgoffe

Hillman Academy

- Kellie Spahr
- Dr. David Boone **Steven Jones**

UPMC | HILLMAN CANCER CENTER

O University of Pittsburgh

References

Alberts B, Johnson A, Lewis J, et al. Molecular Biology of the Cell. 4th edition. New York: Garland Science; 2002. Lymphocytes and the Cellular Basis of Adaptive Immunity. Available from: https://www.ncbi.nlm.nih.gov/books/NBK26921/

American Cancer Society. "Cancer Facts & Figures 2022". Atlanta: American Cancer Society; 2022.

Augustin RC, Delgoffe GM, Najjar YG. Characteristics of the Tumor Microenvironment That Influence Immune Cell Functions: Hypoxia, Oxidative Stress, Metabolic Alterations. Cancers (Basel). 2020 Dec 17

Blank, C.U., Haining, W.N., Held, W. et al. Defining 'T cell exhaustion'. Nat Rev Immunol 19, 665–674 (2019). https://doi.org/10.1038/s41577-019-0221-9

Chang CH, Pearce EL. Emerging concepts of T cell metabolism as a target of immunotherapy. Nat Immunol. 2016 Apr;17(4):364-8. doi: 10.1038/ni.3415. PMID: 27002844; PMCID: PMC4990080.

Cheon, So Yeong & Cho, KyoungJoo. (2021). Lipid metabolism, inflammation, and foam cell formation in health and metabolic disorders: targeting mTORC1. Journal of Molecular Medicine. 99. 10.1007/s00109-021-02117-8.

Delgoffe GM. Filling the Tank: Keeping Antitumor T Cells Metabolically Fit for the Long Haul. Cancer Immunol Res. 2016 Dec;4(12):1001-1006. doi: 10.1158/2326-6066.CIR-16-0244. PMID: 27908931; PMCID: PMC5408882.

DePeaux, K., Delgoffe, G.M. Metabolic barriers to cancer immunotherapy. Nat Rev Immunol 21

References cont.

Dominguez, M., Brune, B., Namgaladze, D. Exploring the Role of ATP-Citrate Lyase in the Immune System. Frontiers in Immunology (2021). https://doi.org/10.3389/fimmu.2021.632526

Ma, J., Zheng, B., Goswami, S. *et al.* PD1^{Hi} CD8⁺ T cells correlate with exhausted signature and poor clinical outcome in hepatocellular carcinoma. *j. immunotherapy cancer* 7, 331 (2019).

"MojoSort™ Streptavidin Nanobeads Protocol - Negative Selection." *BioLegend*. https://www.biolegend.com/fr-lu/protocols/mojosort-streptavidin-nanobeads-protocol-negative-selection.

Petan T, Jarc E, Jusović M. Lipid Droplets in Cancer: Guardians of Fat in a Stressful World. Molecules. 2018 Aug 3;23(8):1941. doi: 10.3390/molecules23081941. PMID: 30081476; PMCID: PMC6222695.

Scharping, N.E., Rivadeneira, D.B., Menk, A.V. et al. Mitochondrial stress induced by continuous stimulation under hypoxia rapidly drives T cell exhaustion. Nat Immunol 22, 205–215 (2021). https://doi.org/10.1038/s41590-020-00834-9

"Study of MTB-9655, an Inhibitor of ACSS2, in Patients With Advanced Solid Tumors." ClinicalTrials.gov. ID: NCT04990739

Sugiura A, Rathmell JC. Metabolic Barriers to T Cell Function in Tumors. J Immunol. 2018 Jan 15;200(2):400-407. doi: 10.4049/jimmunol.1701041. PMID: 29311381; PMCID: PMC5777533.

Wherry, E., Kurachi, M. Molecular and cellular insights into T cell exhaustion. Nat Rev Immunol 15, 486–499 (2015). https://doi.org/10.1038/nri3862

Appendix – All Cytokine unstim controls

Appendix - Gating

AS = acute stimulation CS = chronic stimulation

```
Gaiting (1) lymphocytes
(2/3) singlets
(4) live cells
(5) CD8<sup>+</sup> T cells
```


Appendix – Cytokines

CS; aCD3/aCD28 restim

Repeat 1

Observed noticeable increase in cytokine production in cell group treated with 40 μM ACLYi concentration.

Repeat 2

Appendix – Flow Cytometry

• Cells were analyzed for surface markers, intracellular markers, and cytokine production via **flow cytometry**

A flow cytometer performs singlecell analysis of stained markers.

The Effects of Limiting Citrate-Derived Acetyl-CoA Synthesis on the Development of Exhaustion in CD8⁺ T Cells

Alessandra Azure¹, Kellie Spahr²

¹Washington State, UPMC Hillman Academy, ²Department of Immunology, University of Pittsburgh METHODS

Isolate naïve

CD8+T cel

C57BI/6

INTRODUCTION

- CD8⁺ T cells are a subset of T cells that kill cancer cells
- + IFNy and TNF- α are pro-inflammatory cytokines. They promote an anti-tumor immune response

T cells can lose their effector function when entering a hypofunctional state called 'exhaustion'

Driven, in part, by chronic activation due to persistent antigen exposure

[2]

exhauste

metabolite in the FAS

cvtosol

limited

pathway. ATP Citrate Lyase

(ACLY) is an enzyme that

catalyzes the conversion of

citrate to acetyl-CoA in the

By inhibiting ACLY, citrate-

derived acetyl-CoA

production is therefore

· PD-1 and TIM-3 are surface markers highly expressed by exhausted T cells - serve as phenotypic indicators of exhaustion

[1]

- · Exhausted T cells lose full mitochondria function, causing them to shift metabolism to alternate pathways - possibly the fatty acid synthesis (FAS) pathway
 - Observations of lipid accumulation in exhausted cells

GOALS

- Big Picture: Prevent T cell progression to exhaustion using a metabolism-focused approach
- · Why it matters: Exhausted T cells fight cancer poorly. Preventing exhaustion could improve cancer patient survival outcomes.
- Investigate: Does inhibiting citrate-derived Acetyl-CoA production impact the development of exhaustion in CD8⁺ T cells?
- · If so, could the observed accumulation of lipid droplets in exhausted T cells be a driver of exhaustion?

HYPOTHESIS

Limiting Acetyl-CoA production will help CD8⁺ T cells retain their anti-tumor capabilities.

Because exhausted T cells show decreased ability to extract energy from lipids; so, preventing T cells from over-utilizing the fatty acid synthesis pathway may improve their ability to function

- · CD8+ T cells were isolated via negative selection using MojoSort™ Streptavidin Nanobeads
- · T cell receptor (TCR) was activated in vitro with αCD3/αCD28 Dynabeads[™] (+ mulL-2)
- · Acute Stimulation (AS) and Chronic Stimulation (CS) groups
- · AS = 24-hour TCR stimulation only
- · CS = 6 days continuous TCR stimulation · Media contains ATP Citrate Lvase inhibitor (ACLYi)
- BMS-303141

Cell Growth

- 4 concentrations used; 0µM = control
- · All cells were analyzed using flow cytometry Cvtokine staining included un-restimulated controls: a protein export inhibitor was added to cells prior to restimulation and cytokine staining N = 2 full repeats

Activate 24hrs

RESULTS

As inhibitor concentration increased, cell proliferation decreased, possibly due to metabolic stress. As expected, chronically stimulated cells proliferated less than acutely stimulated cells. Normalized Cell Growth

Cytokine Production of IFNy and TNF-a

Surface Markers PD-1 and TIM-3

Cells treated with 40µM of ACLYi consistently produced notably more pro-inflammatory cytokines (IFNy and TNF-a) than cells treated with lower inhibitor concentrations or no inhibitor

Flow cytometry analysis revealed little change in PD-1 or TIM-3 expression between inhibitor concentrations. As expected, the CS group exhibited a higher percentage of PD-1hi TIM-3hi cells than the AS groups overall.

CONCLUSIONS

- Inhibiting Acetyl-CoA synthesis does impact CD8⁺ T cell effector function
 - · Sustained cytokine signaling would promote antigen presentation and recruitment of immune cells - therefore improving the body's immune response against cancer
- · Little to no observed impact on phenotypic exhaustion Optimal ACLYi concentration likely lies around 30µM
- Higher inhibitor concentration = less cell proliferation; more cvtokine impact
- · May be possible that ACLYi is delaying T cell progression to terminally differentiated exhaustion
- · Results provide evidence to the merit of investigating lipid accumulation as a driver of exhaustion

FUTURE DIRECTIONS

- Repeat testing under hypoxia (1.5% O2) to mimic conditions of the tumor microenvironment
- · Use microscopy to visualize changes in lipid droplet size
- Making the jump to in vivo:
- · Test CD8⁺ T cells treated with ACLYi in in vivo mouse tumors; observe rates of IFN γ and TNF- α production in TILs
- Pair with a PD-1/PD-L1 blockade therapy; mitigate immunosuppressive effects of PD-1 binding
- Bench to bedside transition:
 - · Current First-In-Human clinical trial use a similar, orallyavailable inhibitor of Acetyl-CoA production (via ACSS2) in patients with advanced solid tumors
 - · Immunotherapy potential

REFERENCES [1] "Measuring CD8+ T Cell Exhaustion." Cofactor Genomics, 2019 https://cofactorgenomics.com/wk-33-cd8-t-cell-exhaustion/. Accessed Mar. 22, 2023. [2] Image credit: Nicole Scharping

- [3] Cheon, S. et al. Journal of Molecular Medicine, 2021, Image has been edited for
- [4] Zhang, J. et al. Federation of American Societies for Experimental Biology, 2021 Chang CH, Pearce EL. Emerging concepts of T cell metabolism as a target of
- immunotherapy. Nat Immunol. 2016 Apr;17(4):364-8. doi: 10.1038/ni.3415. PMID: 27002844: PMCID: PMC4990080 Delgoffe GM. Filling the Tank: Keeping Antitumor T Cells Metabolically Fit for the
- Long Haul. Cancer Immunol Res. 2016 Dec;4(12):1001-1006. doi: 10.1158/2326-6066 CIR-16-0244, PMID: 27908931; PMCID: PMC5408882,
- DePeaux, K., Delgoffe, G.M. Metabolic barriers to cancer immunotherapy. Nat Rev Immunol 2
- Scharping, N.E., Rivadeneira, D.B., Menk, A.V. et al. Mitochondrial stress induced by continuous stimulation under hypoxia rapidly drives T cell exhaustion. Nat Immunol 22, 205-215 (2021). https://doi.org/10.1038/s41590-020-00834-9
- *Study of MTB-9655, an Inhibitor of ACSS2, in Patients With Advanced Solid Tumors, " Clinical Trials, gov, ID: NCT04990739

ACKNOWLEDGEMENTS

Many thanks to my mentor and all those who have supported me throughout this project:

NIH

Delgoffe Lab, University of Pittsburgh

Hillman Academy

- Kellie Spahr Greg Delgoffe, PhD Davana Rivadeneira, PhD
- David Boone, PhD Steven Jones Tulia Bruno, PhD