Apply Machine Learning to Identify Unique Patient Clusters and Associated Key Biomarkers in Rheumatoid Arthritis

Developing a Point of Care Test with a Multi Biomarker Panel for Patient Classification and Disease Progression

Gabriella Lui
Fair ID: USWA03
Project ID: TMED032
Category: Translational Medical Science / Disease Detection and Diagnosis
What is Rheumatoid Arthritis?

- **Rheumatoid Arthritis (RA)** is an autoimmune disease, causing inflammation in joints and eventually bone erosion and joint deformity.
- As of now, there is **no cure**– the current goal of RA treatment is **remission**
- Super complex disease – necessitates a trial and error treatment approach

The Important Role of Biomarkers in the Pathogenesis Of RA

Biomarkers can predict the onset of RA and forecast disease activity in established RA patients

- Cytokines are biomarkers of systemic inflammation that may appear prior to symptoms
- While RA **has no cure**, pre-emptive treatment using disease-modifying antirheumatic drugs (DMARDs) in the ‘Window of Treatment (WoT)’, may prevent the onset of RA
- Biomarkers also actively appear in later stages of RA and forecast disease progression or remission
- Advantageous for disease and treatment monitoring
The Need for a Point of Care Test for RA Disease Progression

• Increase Health equity and access to quality patient care
• Due to Covid-19, patients have been unable to travel to the clinic
• Resorting to Telemedicine, rheumatologists have not had access to quantitative measures to assess their RA patients’ conditions due to travel restrictions
• This will aid research in RA and precision medicine, allowing physicians to pinpoint an optimal treatment plan for a specific phenotype of RA patients sooner

What’s a Point of Care (POC) Test?

Proof of concept LFT that I designed last summer using IL-6 as the assay analyte
Apply machine learning modeling to a 15 year longitudinal RA dataset to determine the optimal panel of a few biomarkers (out of 40) that might accurately predict RA disease progression and treatment response.

Create a Point of Care (POC) assay that tests for the identified panel of highly correlated biomarkers that can reveal a patient’s RA disease progression.
University of California San Francisco RA Cohort is ethnically and racially diverse. Clinical observations spanned over 15 years.

The biomarkers that were obtained at each visit for the 2 cohorts:

VECTRA panel (EGF, IL6, LEPTIN, VEGF, CRP, SAA, VCAM1, MMP1, MMP3, RESISTIN, TNFRI, YKL40, HsCRP)

Extended Cytokine Panel (IL1b, IL1ra, IL2, IL4, IL5, IL6, IL7, IL8, IL9, IL10, IL12, IL13, IL15, IL17, Eotaxin, FGF, GCSF, GMCSF, IFNg, IP10, MCP1, MIP1a, MIP1b, PDGF, RANTES, TNFa, VEGF)
Identifying Key Biomarkers for RA Prognosis of a General Cohort

Data Preparation, Cleansing & Transformation

Maximize number of observations without introducing additional error

- Any observations with missing or out-of-range Vectra-DA & Extended Cytokine Panel values were eliminated
- Input raw longitudinal observations without imputation
- Numeric observations were “scaled” by subtracting the values by the center value and then divide by the standard deviation

More on LASSO
- LASSO (Least Absolute Shrinkage and Selection Operator)
 \[
 \sum_{i=1}^{n} (y_i - \sum_{j} x_{ij} \beta_j)^2 + \lambda \sum_{j=1}^{p} |\beta_j|
 \]
 - As \(\lambda \) increases, more coefficients are set to zero. Best \(\lambda \) was calculated and then fed to the algorithm
- \(y_i \) is DAS28 (RA Disease Activity)
- \(x_{ij} \) are extended cytokines panel & Vectra components
- Some \(\beta \)s are shrunk to exactly zero => variables are being eliminated

Dimensionality Reduction & Feature Selection

Parse out only a few highly correlated key biomarkers

- Principal component analysis does not retain original features. Instead, it provides vectors that are linear combinations of the original features.
- LASSO retains original features by performing feature selection by setting the coefficient of nondominant variables to zero.

- Apply LASSO machine learning algorithm to select the key biomarkers / Optimal Panel that are highly correlated to Disease Activity
- Apply Multi-Variant Regression to the optimal biomarker panel to “Predict” Disease Activity
Optimal Biomarker Panel for the Prognostication of a General Patient Cohort

- **EGF** - expressed on synovium (lining of cell) and promotes fibroblast proliferation in RA and production of pro-inflammatory cytokines.
- **IL6** - promotes production of autoantibodies, induces endothelial cells to produce IL8 and stimulate osteoclasts (erosions). Enhance production of MMPs ➔ damage cartilage. Amongst many other things.
- **Leptin** - pro-inflammatory, secreted by fat cells. Stimulates the immune system in many ways.
- **SAA** - Similar to CRP, made by liver, many downstream proinflammatory effects.
- **MMP3** - marker of tissue destruction released by chondrocytes/synovial cells leading to cartilage destruction.
- **HSCRP** - CRP released by liver, similar to SAA, many downstream proinflammatory effects.

Interleukin 9 (IL9)
- Secreted by T Helper type 9 cells (subset of CD4+ T Cells)
- **Implicates the pathogenesis of autoimmune diseases**
- Increases MMP production - a protein that contributes to tissue damage
- Facilitates Th17 differentiation – pro inflammatory T cells

IP10 / CXCL10 (Gamma Interferon Induced Protein 10)
- Overexpressed in synovial tissue + serum in pre-and established RA
- Correlates with disease activity DAS28ESR
Identifying Biomarker Panels for Unique phenotypes of established RA patients

Data Preparation, Cleansing & Transformation

- Any observations with out-of-range values were eliminated
- Missing values were imputed using MICE (Multivariate Imputation via Chained Equations)
- Cross-sectional observations were created by Z-score normalization to collapse data per patient
- Numeric observations were “scaled” by subtracting the values by the center value and then divided by the standard deviation

Associate Observations with Individual Patients

Unsupervised Machine Learning Clustering

- Unsupervised Machine Learning K-prototype Mixed variable types (numerical and categorical) clustering
- K-prototype Dunn Index to compute optimal number of Clusters (k)
- Calculate the best λ (weightage for categorical values)
- Set K and λ in K-prototype modeling

<table>
<thead>
<tr>
<th>Model based</th>
<th>K mean</th>
<th>Hierarchical</th>
<th>K proto</th>
</tr>
</thead>
<tbody>
<tr>
<td>Unbiased groupings- without user dictated # of clusters</td>
<td>✔</td>
<td></td>
<td>✔</td>
</tr>
<tr>
<td>Mixed parameters- categorical and continuous</td>
<td></td>
<td>✔</td>
<td>✔</td>
</tr>
<tr>
<td>Optimized to handle large amounts of data</td>
<td>✔</td>
<td>✔</td>
<td>✔</td>
</tr>
</tbody>
</table>
Identifying Biomarker Panels for Unique phenotypes of established RA patients

Dimensionality Reduction & Feature Selection

- Parse out only a few highly correlated key biomarkers within each patient phenotype
- Un-collapse the aggregated patient data with associated cluster identifications
- Apply LASSO machine learning algorithm onto the longitudinal data over time to select the key biomarkers / Optimal Panel that are highly correlated to Disease Activity in each cluster
- Apply Multi-Variant Regression to the optimal biomarker panel to “Predict” Disease Activity

Longitudinal Data Analysis

- Perform Summary Statistics on each cluster’s clinical baseline data and longitudinal data over time
- Observe unique characteristics in each of the clusters
Summary Statistics for 4 Distinct Patient Clusters

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Age</td>
<td>54.8 (13.6)</td>
<td>63.6 (9.7)</td>
<td>50.8 (14.9)</td>
<td>58.2 (15.8)</td>
<td>50.3 (12.1)</td>
</tr>
<tr>
<td>Female Sex</td>
<td>318 (85.3%)</td>
<td>101 (87.1%)</td>
<td>57 (81.4%)</td>
<td>11 (78.6%)</td>
<td>149 (86.1%)</td>
</tr>
<tr>
<td>Race</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Hispanic/Latino</td>
<td>181 (48.5%)</td>
<td>22 (19.0%)</td>
<td>47 (67.1%)</td>
<td>5 (35.7%)</td>
<td>107 (61.8%)</td>
</tr>
<tr>
<td>Asian</td>
<td>123 (33.0%)</td>
<td>73 (62.9%)</td>
<td>8 (11.4%)</td>
<td>6 (42.9%)</td>
<td>36 (20.8%)</td>
</tr>
<tr>
<td>Black</td>
<td>35 (9.4%)</td>
<td>12 (10.3%)</td>
<td>8 (11.4%)</td>
<td>2 (14.3%)</td>
<td>13 (7.5%)</td>
</tr>
<tr>
<td>White + Other</td>
<td>34 (9.1%)</td>
<td>9 (7.7%)</td>
<td>7 (10.0%)</td>
<td>1 (7.1%)</td>
<td>17 (9.8%)</td>
</tr>
<tr>
<td>RF</td>
<td>315 (84.5%)</td>
<td>104 (89.7%)</td>
<td>56 (80.0%)</td>
<td>13 (92.9%)</td>
<td>142 (82.1%)</td>
</tr>
<tr>
<td>ACPA</td>
<td>297 (79.6%)</td>
<td>98 (84.5%)</td>
<td>54 (77.1%)</td>
<td>12 (85.7%)</td>
<td>133 (76.9%)</td>
</tr>
<tr>
<td>Disease Duration</td>
<td>7.8 (7.6)</td>
<td>13.7 (9.7)</td>
<td>5.4 (4.6)</td>
<td>6.7 (5.7)</td>
<td>4.9 (3.8)</td>
</tr>
<tr>
<td>csDMARD</td>
<td>344 (92.2%)</td>
<td>108 (93.1%)</td>
<td>63 (90.0%)</td>
<td>13 (92.9%)</td>
<td>160 (92.5%)</td>
</tr>
<tr>
<td>bDMARD</td>
<td>185 (49.6%)</td>
<td>45 (38.8%)</td>
<td>30 (42.9%)</td>
<td>4 (28.6%)</td>
<td>106 (61.3%)</td>
</tr>
<tr>
<td>Prednisone</td>
<td>6.70 (3.81)</td>
<td>6.02 (3.96)</td>
<td>8.62 (4.92)</td>
<td>5.77 (1.37)</td>
<td>6.33 (2.81)</td>
</tr>
<tr>
<td>BMI</td>
<td>28.2 (4.5)</td>
<td>26.6 (3.8)</td>
<td>28.7 (3.8)</td>
<td>28.0 (6.2)</td>
<td>29.1 (4.7)</td>
</tr>
<tr>
<td>DAS28 ESR</td>
<td>4.2 (1.1)</td>
<td>4.2 (1.0)</td>
<td>5.5 (0.8)</td>
<td>3.9 (0.8)</td>
<td>3.7 (0.9)</td>
</tr>
</tbody>
</table>

Lasso Results

EGF	-0.16*	-0.41***	--	--	-0.20**
Leptin	0.15**	--	0.21*	--	0.21**
CRP	0.34**	0.54***	--	--	--
VCAM1	--	--	--	-0.73	--
YLK40	--	0.26*	--	--	--

p < 0.05, <0.01**, <0.001***
4 Distinct Patient Clusters Identified Biomarker Panels for Each Cluster
Findings submitted to the EULAR (European League Against Rheumatism) 2021 Conference

Cluster 1 (n=116) → CRP, EGF, YKL40

Patient Profile – long standing RA patients with high chronic inflammation.
Older (63.6±9.7) with long disease duration (13.7±9.7) notable these patients are on prednisone.

CRP generalized downstream proinflammatory protein, making it a good summary marker for many other proinflammatory proteins.

YKL-40 is produced by chondrocytes and mature macrophages, has roles in cell proliferation. More inflammation = more YKL-40?

Cluster 2 (n=70) → Leptin

Patient Profile – This is an obesity related arthritis (not true RA) cohort
Higher BMI (28.7±3.8) - fat associated leptin
Highest Prednisone Dosage (8.6 ± 4.9) – possibly contributes to weight gain.
Notable lowest CCP and RF positivity (80%)

Cluster 3 (n=14) → VCAM1

Patient Profile – Non-aggressive RA cohort possibly in remission
Nuanced since it has the lowest n
Relatively low DAS28ESR (3.9 ± 0.8)

Cluster 4 (n=173) → EGF, Leptin

Patient Profile – early-stage RA cohort with high biologic usage and weight
Largest cluster with shortest disease duration (4.94.9±3.8 years)
Highest biologic bDMARD use (61.3%)
Higher BMI (29.1 ± 4.7) - fat associated leptin

Leptin is pro-inflammatory and secreted by fat cells. Stimulates the immune system in many ways.

EGF expressed on synovium and promotes fibroblast proliferation in RA. Produces pro-inflammatory cytokine (downstream effects) making it another good summary marker

VCAM1 is a cellular adhesion molecule meaning it helps other cells get to sites of inflammation. Possibly indicates remission.
Testing the Lateral Flow Assay Sensitivities – Sequential vs. Premixed

Premixed
- Low cost
- Home use
- Sensitive
- Non-invasive (only requires a few drops of blood)

Sequential lateral flow test #3

<table>
<thead>
<tr>
<th>Concentration (ng/mL)</th>
<th>Test Result</th>
</tr>
</thead>
<tbody>
<tr>
<td>10</td>
<td>Positive</td>
</tr>
<tr>
<td>5</td>
<td>Positive</td>
</tr>
<tr>
<td>2.5</td>
<td>Positive</td>
</tr>
<tr>
<td>1</td>
<td>Positive</td>
</tr>
<tr>
<td>0.5</td>
<td>Positive</td>
</tr>
<tr>
<td>0.25</td>
<td>Positive</td>
</tr>
<tr>
<td>Negative control</td>
<td>Negative</td>
</tr>
</tbody>
</table>

- Visual LOD for sequential LFT is 0.5 ng/mL